Preparation of (111)-Oriented Epitaxial Fe_{3- x **}O₄ Films on** α **-Al₂O₃ (0001) Substrates by Coating-Pyrolysis Process Using Postepitaxial** Topotaxy via (0001)-Oriented α -Fe₂O₃

Iwao Yamaguchi, Tsuyoshi Terayama,*** Takaaki Manabe, Tetsuo Tsuchiya, Mitsugu Sohma, Toshiya Kumagai, and Susumu Mizuta

*National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1, Tsukuba, Ibaraki 305-8565, Japan; and *Chiba Institute of Technology, Narashino 2-17-1, Chiba 275-0016, Japan*

Received June 15, 2001; in revised form September 5, 2001; accepted September 14, 2001; published online November 27, 2001

We have succeeded in preparing the (111)-oriented epitaxial films of magnetite (Fe_3O_4) and maghemite $(\gamma - Fe_2O_3)$, or $Fe_{3-x}O₄$, on the C-planes of sapphire $[\alpha-Al_2O_3(0001)]$ by a coating-pyrolysis (CP) process using postepitaxial topotaxy (PET). In this set of film and substrate, not only the structure type is different, i.e., the cubic spinel type versus hexagonal corundum type, but the lattice mismatch is large, i.e., 8.0**%**. The PET process consists of one epitaxial growth and one or more topotactic reaction steps. In the present work, a (0001)-oriented epitaxial film of hematite $(\alpha$ -Fe₂O₃) [corundum-type iron (III) oxide] was first formed on an α -Al₂O₃(0001) substrate by CP process. Second, α -Fe₂O₃ was reduced to Fe₃O₄ in a gas flow of an argon-hydrogen gas mixture with a hydrogen partial pressure of 0.023 atm. Finally, the $Fe₃O₄$ was oxidized in air to γ -Fe₂O₃, or $Fe_{3-x}O₄$. Pole-figure analysis exhibited that both the products, $Fe₃O₄$ and γ -Fe₂O₃, were (111)-oriented and epitaxially grown on the substrate surface. The crystallographic relationship is $Fe₃O₄$, γ -Fe₂O₃ (111) $\|\alpha$ -Al₂O₃ (0001) and Fe₃O₄, γ -Fe₂O₃ $\lceil 1\overline{1}0\rceil \rceil \rceil \alpha$ -Al₂O₃ $\langle 1\overline{1}00\rangle$, $\langle \overline{1}100\rangle$. This implies that α - $Fe₂O₃(0001)$ has been topotactically converted to $Fe₃O₄(111)$ and γ -Fe₂O₃(111). Magnetic properties and surface morphology of the 5lms were also investigated using SQUID and atomic force microscopy, respectively. \circ 2002 Elsevier Science

Key Words: topotaxy; epitaxial film; coating pyrolysis; redox reaction; hematite; magnetite; maghemite; pole figure.

INTRODUCTION

Epitaxial metal oxide films are being expected for use in a variety of electronic and magnetic applications [\(1\).](#page-8-0) Among various techniques for fabrication of epitaxial oxide films, chemical solution-based processes like the sol-gel method and a coating-pyrolysis (CP) process, or metal organic deposition (MOD), are noted as being less expensive and suitable for large-scale production. We have been preparing epitaxial films of various functional oxide, such as superconductor [\(2\)](#page-8-0), ferroelectric [\(3\),](#page-8-0) and magnetic [\(4\)](#page-8-0) materials by this process. However, when crystal structures are different or the lattice misfit is large between the film and the substrate materials, growth of epitaxial films is considerably difficult by these chemical solution-based processes. This arises from the fact that the microstructure of the product layer is chiefly governed by thermodynamic factors rather than by kinetic factors; that is, the CP is essentially an *ex situ* process, in which a precursor layer is transformed into a product film through high-temperature annealing.

In this article, we will introduce a new idea of preparing an epitaxial (111)-oriented magnetite (Fe_3O_4) films on sapphire $(\alpha - A_2O_3)$, which has been difficult to fabricate especially by the solution-related processes. Before doing so, we summarize the structures and lattice constants of relevant iron oxides and substrate materials in [Table 1](#page-1-0) and the previous work on epitaxial growth of $Fe₃O₄$ and hematite $(\alpha$ -Fe₂O₃) films. [Table 1 s](#page-1-0)hows that Fe₃O₄ has a spinel-type structure, *Fd3m*, with a face-centered cubic (fcc) oxide anion sublattice. Therefore, epitaxial $Fe₃O₄$ films have chiefly been grown on MgO $(5-7)$ $(5-7)$, in which oxide anion sublattice is the same as the spinel structure, i.e., fcc, and the lattice mismatch between them is so small, -0.3% . Similarly, the crystal structure of α -Fe₂O₃; i.e., rhombohedral corundum structure, $R\overline{3}c$, is the same as α -Al₂O₃, in which oxide anion sublattice is hexagonal close packing (hcp). It is easy to obtain epitaxial α -Fe₂O₃ films on α -Al₂O₃ because these structures are the same, although the lattice mismatch is comparatively large, 5.8%. Thus, epitaxial α -Fe₂O₃ films on α -Al₂O₃ substrates were prepared by not only gas-phase methods [\(5\)](#page-8-0) but solution-related methods [\(8, 9\).](#page-8-0) In contrast, when the crystal structures of the film and the substrate materials are different, epitaxial (111)-oriented $Fe₃O₄$ films on α -Al₂O₃(0001) [\(5, 6,](#page-8-0) 10–[12\)](#page-8-0) or Pt(111) (13–[15\),](#page-8-0) for example, were fabricated only by gas-phase deposition methods. There have been no reports on the preparation of epitaxial (111)-oriented $Fe₃O₄$ films on these substrates by

 α -Fe₂O₃ Corundum (*R*3*c*) *a* = 0.5036, *c* = 1.3749 hcp ABABAB 0.2908 5.8%
MgO Rock salt (*Fm3m*) *a* = 0.4211 fcc ABCABC 0.2978

Corundum $(R\overline{3}c)$ $a = 0.4759$, $c = 1.2993$ hcp ABABAB 0.2748

TABLE 1 The Structures and Lattice Constants of Magnetite (Fe3O4), Hematite (*a*-Fe2O3), MgO, and Sapphire (*a*-Al2O3)

^aHexagonal indice for corundum structure.

Rock salt (*Fm*3*m*)

^bAverage values in oxide anion layers estimated from lattice constants.

Average values in oxide allow layers estimated from lattice constants.
 $c_1^2C_3(0.001)$ and α -Fe₂O₃(0001) films relative to α -Al₂O₃(0001) substrate.

 $d_{Fe_3O_4(111)}$ and $d_{Fe_2O_3(0001)}$ initially to $d_{Fe_3O_4(100)}$ and (111) substrates, respectively.

chemical solution methods to the best of our knowledge. This may be attributed to the structural difference and large lattice mismatch between $Fe₃O₄(111)$ and α -Al₂O₃(0001), i.e., 8.0%, estimated from the average distance between the nearest neighboring oxide anions.

Recently, we investigated the growth behavior of epitaxial films in the CP process using one-component metal oxide systems, Fe-O (8.16) and V-O [\(17\),](#page-8-0) in which the atmosphere of pyrolysis of metal organic compounds as well as that of the subsequent high-temperature heat treatment influences the extent of epitaxy. For example, in the growth of α -Fe₂O₃ the extent of epitaxy. For example, in the growth of α -Fe₂O₃ films on α -Al₂O₃ substrates [\(16\),](#page-8-0) highly epitaxial films were obtained when prefiring was carried out at a temperature corresponding to the removal of most of the organic component from the precursor prior to the formation of metal oxide crystallites. Also, the extent of in-plane alignment of α -Fe₂O₃ films was degraded when they were prepared via the Fe₃O₄ phase, which occurred in a reductive atmosphere due to the decomposition of organic component. Moreover, in the V–O system (17) , we noticed the occurrence of twins in epitaxial V_2O_3 films on α -Al₂O₃ and attributed it to the topotactic reduction of $VO₂$ that formed during pyrolysis or heat treatment. Therefore, in general, the formation of an intermediate phase has been thought disadvantageous for producing an epitaxial film of the expected phase. From the latter negative results, however, we found a new idea of preparing an epitaxial (111)-oriented $Fe₃O₄$ film on α - $Al_2O_3(0001)$, which has been difficult to fabricate by solution-related processes as mentioned earlier. The point is that the transformation of an intermediate phase is effectively used to obtain the expected product phase, i.e., topotactic reduction of an epitaxial α -Fe₂O₃(0001) film. We call such a route a postepitaxial topotactic (PET) process, which consists of a set of epitaxial growth of one phase and its subsequent conversion to another phase by one or more topotactic reactions.

Meanwhile, epitaxial $Fe₃O₄$ films with varied orientations are expected for use in elucidating the catalyst mechanism [\(13\)](#page-8-0) and in high-density recording media with perpendicular magnetization [\(18\)](#page-8-0). Thus, it is quite interesting to grow an epitaxial film of $Fe₃O₄$ on various substrates, especially, on lattice-misfit substrate surfaces. Since solution-related routes have the possibility of providing particles with varying shapes and sizes, like acicular β -FeOOH particles precipitated from an aqueous solution [\(19\)](#page-8-0), and the CP process sometimes produces porous films due to rapid elimination of organic component, it is expected that perpendicularly magnetized films with columnar grains or catalyst films with higher specific surface areas be obtained. Therefore, we tried to prepare an epitaxial $Fe₃O₄(111)$ film on α -Al₂O₃(0001) by the CP process. Furthermore, it is well known that acicular α -Fe₂O₃ particles are firstly reduced to acicular $Fe₃O₄$ and then reoxidized for manufacturing the acicular maghemite (γ -Fe₂O₃) particles for use in magnetic recording media [\(20](#page-8-0),[21\)](#page-8-0). Thus, we also report that epitaxial γ -Fe₂O₃ films can be obtained by topotactic reoxidation of epitaxial $Fe₃O₄$ films produced by PET process. We discuss as well some results of magnetization measurement using SQUID and of surface morphology using atomic force microscopy (AFM) of the films.

EXPERIMENTAL

An iron 2-ethylhexanoate solution diluted with mineral spirit (Nihon Kagaku Sangyo Co., Ltd.) was spin-coated (2000 rpm, 5 s) onto C-plane of sapphire substrates, α - $\text{Al}_2\text{O}_3(0001)$. The coated films were prefired in air at 300°C for 1 h. First, the prefired film was heat-treated in a CO-CO₂ gas mixture $(pCO/pCO_2 = 10^{-1})$ at 600°C for 2 h to find out if an epitaxial $Fe₃O₄$ film directly forms from the amorphous precursor film.

Next, we tried to prepare epitaxial $Fe₃O₄$ films via epitaxial α -Fe₂O₃ films that can be obtained by heat treatment of the prefired films at 800° C for 2 h in a stream of air. The epitaxial α -Fe₂O₃ films were reduced in a flow of a CO-CO₂ gas mixture $(pCO/pCO_2 = 10^{-1}, 400-600^{\circ}C)$ for $4 h$ or in a gas flow of a hydrogen-argon mixture $(pH_2 = 0.023$ atm, 200–600°C) for 4 h. The latter condition

 α -Fe₂

 α -Al₂O₃

is strongly reductive, whereas the former condition is in the $Fe₃O₄$ stable region. Then, the $Fe₃O₄$ films were oxidized at 250–400°C for 2 h in a stream of air to γ -Fe₂O₃ and α - $Fe₂O₃$. Film thickness was evaluated from the weight change to be $300-500$ nm.

The phases and orientations of the product films were confirmed by the conventional XRD θ -2 θ scanning and pole-figure analysis by the Schulz reflection method, using the $CuK\alpha_1$ line (MAC Science Co., Ltd. X-ray diffractometer MXP^{3A} with a pole-figure attachment). The polefigure measurement was carried out on the $10\overline{1}4$ reflection of α -Fe₂O₃ and on the 400 reflection of spinel oxides (Fe₃O₄, γ -Fe₂O₃). Magnetic properties were measured by SQUID magnetometer (Quantum Design, MPMS-7). In this measurement, magnetization per gram of an α -Al₂O₃ substrate without film was first measured as standard. The magnetization per gram of film was evaluated by subtracting the magnetization due to the substrate estimated with the weight of the substrate. Surface morphology of the films was observed by atomic force microscopy (AFM, Digital Instruments, Nanoscope IIIa).

RESULTS AND DISCUSSION

A. Heat Treatment of Prefired Films

Figure 1 shows XRD θ -2 θ scan profiles for the films obtained after the as-prefired amorphous precursor films were heat-treated under various conditions (atmosphere and temperature) for 2 h; (a) α -Fe₂O₃ film (air, 800°C), (b) Fe₃O₄ film $(pCO/pCO_2 = 10^{-1}$, 600°C), and (c) Fe film $(pH_2 = 0.023$ atm, 600°C). These conditions correspond to the stable regions of the respective product phases [\(22\).](#page-8-0) It is clearly seen in Fig. 1a that a (0001)-oriented α -Fe₂O₃ film

was obtained since the 0006 peak of α -Fe₂O₃ appeared at the low-angle side of that of α -Al₂O₃ substrate. On the other hand, the XRD pattern for the $Fe₃O₄$ film resembles the powder pattern except for the substrate's peaks (Fig. 1b). The formation of nonoriented $Fe₃O₄$ is ascribed to a very large mismatch (8.0%) between $Fe₃O₄(111)$ and α - $Al_2O_3(0001)$. Figure 1c shows that metal iron will precipitate at this temperature in the atmosphere that we use in the reduction treatment as referred to below.

B. Reduction of Epitaxial a*-Fe*2 *O*3 *Films to Fe*3 *O*4 *Films*

These results show that direct production of an epitaxial film of $Fe₃O₄$ from an as-prefired amorphous precursor is very difficult. Therefore, we tried to prepare an epitaxial Fe₃O₄ film via an epitaxial α -Fe₂O₃ film by reductive conversion. First, the epitaxial α -Fe₂O₃ film was reduced in a CO-CO₂ gas mixture $(pCO/pCO_2 = 10^{-1})$ that corresponds to an atmosphere in which the $Fe₃O₄$ phase is stable. However, epitaxial $Fe₃O₄$ films were not obtained under these conditions. According to XRD measurement (not shown), neither α -Fe₂O₃ 000*l* nor Fe₃O₄ *hhh* peaks were observed in the films reduced at $400-600^{\circ}$ C, except for the $Fe₃O₄$ 311 peak, which is the most intense peak in the powder pattern, for the film reduced at 600° C. Thus, we tried to reduce the α -Fe₂O₃ films using a more reducing atmosphere $(pH_2 = 0.023$ atm) that corresponds to the region in which $Fe₃O₄$ is unstable. Figure 2 shows XRD θ -2 θ scan profiles for the films reduced in the $Ar-H_2$ mixed gas

FIG. 1. XRD patterns of films after heat treatments of amorphous precursors at (a) 800°C in air, (b) 600°C in CO-CO₂ gas mixture $(p\text{CO}/p\text{CO}_2 = 10^{-1})$, and (c) 600°C in H₂-Ar gas mixture ($p\text{H}_2 = 0.023$ atm).

FIG. 2. XRD patterns of films before and after reduction of the epitaxial α -Fe₂O₃(0001) film at 200–600°C in H₂-Ar gas flow ($pH_2 = 0.023$ atm).

 $(pH_2 = 0.023$ atm) flow at 200–600°C as well as that of the film before reduction. It is clearly shown that the (111) oriented $Fe₃O₄$ grains have grown after reduction in the temperature range $300-400^{\circ}$ C, whereas metal iron is formed after reduction at 350° C and higher. The film that contains $Fe₃O₄$ alone was obtained by heat treatment only at 330°C. The color of the specimen, black, suggests the formation of Fe₃O₄ rather than that of γ -Fe₂O₃, of which the color is dark brown. The reducing atmosphere in this case is so strong that the optimum temperature region for occurrence of Fe3 O4 becomes very narrow. One might think that it would be easier to control the temperature if we use a flow of a less reductive gas. However, a milder reducing atmosphere using a CO-CO₂ mixture $(pCO/pCO_2 = 10^{-1}$, 400° C), which corresponds to the Fe₃O₄ stable region, was found to be insufficient for reduction of α -Fe₂O₃ to Fe₃O₄.

*C. Oxidation of Epitaxial Fe*3 *O*4 *Films to Epitaxial* c-*Fe*2 *O*3 *Films*

Subsequently, the epitaxial $Fe₃O₄$ films were oxidized in a stream of air at $250-400^{\circ}$ C for 2 h. Figure 3 shows XRD θ -2 θ scan profiles for the product films together with the $Fe₃O₄$ film before oxidation. It is found that the (111)oriented spinel structure can be preserved after oxidation below 300°C and that the α -Fe₂O₃ grains reappeared by oxidation at 350°C and higher. Peaks at $2\theta = 23.8^{\circ}$, 26.7° corresponding to the compound for attaching the the sample to the holder and peaks at $2\theta = 20.5^{\circ}$ and 64.5° corresponding to the α -Al₂O₃ 003 and 009 reflections, respectively, were observed in scan profiles of some specimens. The lattice parameters of $Fe₃O₄$ and γ -Fe₂O₃ evaluated from the *d* values of the 222 peaks by assuming the strain-

FIG. 3. XRD patterns of films before and after oxidation of the epitaxial $Fe₃O₄$ (111) films at 250–400°C in air flow.

free cubic structure decreased from 0.8385 to 0.8329 nm after oxidation at 300°C. The lattice parameter of γ -Fe₂O₃ was slightly smaller than that according to the ICDD data $(39-1346)$, i.e., 0.8352 nm. However, this value is reasonable because one third of the parameter of superlattices according to Boudeulle *et al*. [\(23\)](#page-8-0) and Greaves [\(24\)](#page-8-0) was 0.833–0.834 nm. The change of color from black to dark brown and the temperature dependence of magnetization as described later also support the phase change of the films from Fe₃O₄ to γ -Fe₂O₃. The crystallite size derived from the full width at half maximum of the *hhh* reflection using the Hall method (25) was both 46 nm for the films before and after oxidation. This means that there was very little growth of crystallite size during the oxidation process. The Hall method also exhibited that the broadening of the *hhh* peaks with increasing 2θ angles implies nonuniform distortion, i.e., the disorder of the *d* spacings, of the (111) plane.

D. Epitaxial Relationship between the $Fe₃O₄$ *<i>and* γ - $Fe₂O₃$ *Films and the* a*-Al*2 *O*3 *Substrate*

The conventional XRD θ -2 θ scanning provides information on the *d* spacings only along the direction perpendicular to the substrate surface; thus we cannot estimate the in-plane alignment of the films from these θ -2 θ scan data. Therefore, we carried out pole-figure measurement, in which the films are tilted (ψ) and rotated (ϕ) at a specified θ -2 θ angle, in order to investigate the in-plane alignment of films. A pole figure using the α -Fe₂O₃ 1014 reflection for the film on α -Al₂O₃ (0001) after heat treatment at 800^oC in air is shown in [Fig. 4a.](#page-4-0) The film is highly in-plane aligned because it exhibited distinct three spots. The appearance of these three spots corresponds to corundum structure, in which the *c*-axis is the axis of threefold rotation.

Similarly, pole-figure analysis was carried out using the $Fe₃O₄$ 400 reflection for the film reduced at 330°C under a *pH*₂ of 0.023 atm. Instead of three spots, six sharp spots corresponding to the sixfold symmetry were observed at $\psi \sim 55^\circ$ in the pole figure for the film [\(Fig. 4b\).](#page-4-0) If the films were fully single crystalline, only three spots would be observed at 120 \degree intervals of ϕ because of threefold symmetry relative to the $\lceil 111 \rceil$ axis. Hence, the pole figure suggests the occurrence of two variants or twinned in-plane alignments between which the angle is 60° or 180° . In other words, there are two kinds of stacking order of close-packed oxide anion layers, i.e., "ABCABC" and "ACBACB" [\(5\)](#page-8-0). [Figure 4c s](#page-4-0)hows ϕ -scans for the α -Al₂O₃ substrate using the 1014 reflection $(2\theta = 35.148^{\circ}, \psi = 38.2^{\circ})$ and for the Fe₃O₄ film using the 400 reflection ($2\theta = 43.05^{\circ}$, $\psi = 54.8^{\circ}$). From the relative peak positions of the scans, the crystallographic relationship was obtained: Fe_3O_4 (111) $\parallel \alpha$ -Al₂O₃ (0001) and Fe_3O_4
[110] $\parallel \alpha$ -Al₂O₃ \langle 1100 \rangle , \langle 1100 \rangle , as illustrated in Fig. 5. The $\lceil 1\overline{1}0\rceil \rceil \alpha$ -Al₂O₃ $\langle \overline{1}100\rangle$, $\langle 1\overline{1}00\rangle$, as illustrated in [Fig. 5.](#page-4-0) The pole figures for the γ -Fe₂O₃ films oxidized at 200–300°C in air exhibited six spots (not shown here) similar to that for

FIG. 4. XRD pole figures of (a) α -Fe₂O₃ film and (b) Fe₃O₄ film after reduction at 330°C, and (c) ϕ -scans of the Fe₃O₄ 400 reflection and the α -Al₂O₃ 1014 reflection for the reduced film.

the $Fe₃O₄$ films since γ -Fe₂O₃ has also the spinel-based structure.

[Figure 6](#page-5-0) shows (a) a pole figure and (b) ϕ -scans using the 1014 reflections for the α -Fe₂O₃ film regenerated from the γ -Fe₂O₃ through oxidation at 400°C in air. There appeared three comparatively strong spots with intervals of 120° and three weak spots at the midway between the former at $\psi = 38^\circ$. Although weak owing to regeneration from γ - $Fe₂O₃$, the latter three peaks are clearly seen by careful measurement of the ϕ -scan [\(Fig. 6b\)](#page-5-0). This means that most of the grains, which contribute to the stronger peaks, have epitaxially grown as the same arrangement with the α - Al_2O_3 substrate with a crystallographic relationship: α - $Fe₂O₃$ (0001) $\|\alpha - Al₂O₃$ (0001) and $\alpha - Fe₂O₃$ $\langle 3000 \rangle \|\alpha - Al₂O₃$ $Al_2O_3 \langle 3000 \rangle$. In contrast, the rest of the grains, which correspond to the weaker spots, are 180° (or 60 $^{\circ}$) rotated variants of which the structural relationship is: α -Fe₂O₃ variants of which the structural relationship is: α -Fe₂O₃ (0001) α -Al₂O₃ (0001) and α -Fe₂O₃ \langle 3000 \rangle α -Al₂O₃ $\langle 3000 \rangle$. Corundum structures have cations in two thirds of octahedral sites. Unoccupied octahedral sites stack "abcabc" along the [0001] axis. In the reoxidized α -Fe₂O₃ films on α -Al₂O₃, if the stacking sequence of unoccupied cation sites in the major grains is "abcabe", that in the minor grains is "acbacb", such as the twins observed in our previous

FIG. 5. The orientation relationship for two variants of epitaxial spinel (111) films on the corundum (0001) substrate.

 V_2O_3 films [\(17\)](#page-8-0). It is surprising that the intensities of the two variants are significantly different. Kachi *et al.* [\(26\)](#page-8-0) found that when they annealed the bulk γ -Fe₂O₃ to form twinned α -Fe₂O₃ the twins disappeared if it was heated above 600°C. However, it is reasonable that twins have disappeared at higher temperatures since the presence of twins implies an excess interface energy and therefore is disadvantageous from the thermodynamic point of view. Similarly, in the present case of α -Fe₂O₃ regeneration, the topotactic reaction seems to be influenced by interface energy with substrate since the majority of grains have grown epitaxially and have the same cation arrangement as the substrate.

E. Magnetic Properties of Fe₃O₄ and γ-Fe₂O₃ Films</sub>

In this section, we discuss the magnetic properties of the Fe₃O₄ film after reduction of the α -Fe₂O₃ film at 330°C in $pH_2 = 0.023$ atm and of the γ -Fe₂O₃ film after oxidation of the Fe₃O₄ film at 300°C in air. The magnetic properties of $Fe₃O₄$ films at low temperatures have been investigated by a number of researchers [\(27\)](#page-8-0). $Fe₃O₄$ undergoes a phase transition called the Verwey transition at \sim 120 K from cubic to monoclinic symmetry accompanied by the drastic change of electric conductivity as well as magnetization [\(28](#page-8-0), [29\).](#page-8-0) [Figure 7](#page-5-0) shows magnetization curves for the $Fe₃O₄$ (28, 29). Figure 7 shows magnetization curves for the $Fe₃O₄$
and γ -Fe₂O₃ films measured by SQUID. A distinct change appeared at \sim 120 K in a magnetic field of 1000 Oe with rising temperature after cooling in zero-magnetic field for

FIG. 6. XRD pole figure of (a) the α -Fe₂O₃ film after reoxidation at 400°C in air and (b) ϕ -scans of the 1014 reflection of α -Fe₂O₃ film and α -Al₂O₃ substrate.

the Fe₃O₄ film but not for the γ -Fe₂O₃ film. This is another evidence of $Fe₃O₄$ in the former film.

Moreover, Fig. 8 shows magnetization versus magnetic field $(M-H)$ hysteresis loops for the Fe₃O₄ and γ -Fe₂O₃ films at 300 K. The magnetic field was applied to the direction parallel to the film surfaces. There was no perpendicular magnetization in the films. Saturation magnetizations are 24 and 15 emu/g for the $Fe₃O₄$ and γ -Fe₂O₃ films, respectively, which are lower than the bulk values (98 and 84 emu/g, respectively). The accuracy in evaluation of magnetization per gram of film depends on that of the weight of the film rather than the error accompanying the subtraction of the magnetization due to the substrate from the measured value. Since the weight of the films was in the order of 10^{-2} mg, which corresponds to $\sim 0.5\%$ of that of the substrates, the accuracy of magnetization per gram of film is one order of magnitude. Another reason for the difference is the cation disorder, or disorder of *d*-spacings as implied by broadening of the FWHM of XRD peaks using the Hall method in section C, caused by a strongly reductive condition. If this is the case, saturation magnetization of the

FIG. 7. Temperature dependence of magnetization for $Fe₃O₄$ and γ -Fe₂O₃ films.

film will approach the bulk value when the film is postannealed in the $Fe₃O₄$ stable region. On the other hand, magnetic coercivities (H_c) were 500 and 250 Oe for the Fe₃O₄ and γ -Fe₂O₃ films, respectively, which were almost identical with those of some (111) -preferred films $(12,30,31)$ $(12,30,31)$. An average crystallite size estimated by XRD was 46 nm, which is considered to be below the single-domain size. However, grain sizes by AFM observation were 100–300 nm as will be shown later. These were consistent with those obtained by Schmitdbauer *et al.*, i.e., \sim 250 nm [\(32\)](#page-8-0). The origin of high H_c value of the films may be the shape, crystalline, or stress-induced magnetic anisotropy; however, further research is needed to discuss the details.

FIG. 8. Magnetic hysteresis curves of $Fe₃O₄$ and γ -Fe₂O₃ films at 300 K.

F. Observations of Surface Morphology by Atomic Force Microscopy

Figure 9 shows AFM images in the height (left) and deflection (right) modes of (a) α -Fe₂O₃, (b) Fe₃O₄, and (c) γ -Fe₂O₃ films. In these modes the probe (cantilever) is scanned as follows. The force applied to the cantilever is changed as the roughness of surface varies. The height image is constructed by the sample height (position) accommodated as the force (deflection) is constant and expresses literally the height itself. By contrast, the deflection image is

Deflection Height Data type Data type (b) $100n$ $1.00~\mu$ 1.00 m Height
300 nm Data type
Z range Deflection
0.157 nm Data type
Z range (c) Data ty
Z range Deflectio
0.154 n

FIG. 9. AFM observations of (a) α -Fe₂O₃, (b) Fe₃O₄, and (c) γ -Fe₂O₃ films. Left and right images correspond to height and deflection modes, respectively.

constructed by the deflection intensity of cantilever at the roughness. Thus, an edge of a particle can be more clearly seen in the deflection image. In Fig. 9a, a number of steps were observed in the α -Fe₂O₃ film, of which the flat surfaces correspond to the α -Fe₂O₃ (0001) basal plane. In contrast, the surface of the Fe₃O₄ and γ -Fe₂O₃ films became blunt, as shown in Figs. 9b and 9c, respectively. Such disappearance of distinct steps is attributable not only to the volume change accompanying the phase changes from α -Fe₂O₃ to $Fe₃O₄$ and to γ -Fe₂O₃ but to isotropic nature of the cubic lattice in the latter spinel-type oxides. Therefore, in the latter films, perpendicular magnetization due to the shape anisotropy is not to be expected. The observed grain sizes were in the order of 100-300 nm. This suggests that no increase or decrease in size has occurred during the redox reactions. However, the grains in the γ -Fe₂O₃ film appeared to consist of aggregation of primary particles with a diameter of \sim 10 nm (Fig. 9c). A number of fine pores and microcracks along the grain boundaries were observed in its deflection image. The occurrence of such pores and cracks is assumed to originate from the volume change from $Fe₃O₄$ to γ -Fe2 O3 and oxygen transport is enhanced through these pores.

G. Structural Transformation between Corundum-Type and Spinel-Type Iron Oxides: Advantages of PET Process

Spinel and corundum structures have different oxide anion sublattices as described earlier. Close packed layers of oxide anions stack in the sequence ABCABC in the spineltype and in the sequence ABABAB in the corundum-type compounds. That is, migration of oxide anions that have a comparatively large ion radius is required. Therefore, the conversion from α -Fe₂O₃ to Fe₃O₄ requires a larger energy than that from $Fe₃O₄$ to γ -Fe₂O₃ in which migration of small cations only is needed. Kachi *et al*. [\(26\)](#page-8-0) and Mathieu *et al*. [\(33\)](#page-8-0) discussed cooperative transfer of oxide anions and iron cations during the γ - to α -Fe₂O₃ transition. The displacement of oxide anion accompanying the transformation from α -Fe₂O₃ to Fe₃O₄ is considered to be similar to the reverse reaction from γ - to α -Fe₂O₃ transition as shown in [Fig. 10.](#page-7-0) That is, each pair of oxide layers with one iron layer between them cooperatively glide with a translation step of $a_{\text{hem}}/3$ along the direction $\langle 3000 \rangle$ or $\langle 3000 \rangle$, the basal plane being the glide plane. The number of iron cations between the pair of oxide layers in Fe₃O₄, $\frac{3}{4}$, is different from that in α -Fe₂O₃, $\frac{2}{3}$. Therefore, cations must transverse across oxide layers. Further work such as atomic image observations using transmission electron microscopy will be needed to discuss the refined reaction mechanism, however, we presume that some cooperative transfer of ions occurs to help the topotactic transformation between the corundum-type and spinel-type iron oxides.

Finally, reaction schemes that are included in this article are shown in [Fig. 11.](#page-7-0) Bold arrows represent postepitaxial

FIG. 10. Schematic displacement of close-packed oxide layers in the topotactic transition from α -Fe₂O₃ to Fe₃O₄. (adapted from Kachi *et al.* [\(26\)\)](#page-8-0).

topotaxy routes. On the other hand, epitaxial growth of $Fe₃O₄(111)$ films on α -Al₂O₃(0001) via an amorphous phase is unlikely. This is suggested by the following two results. First, no amorphous phase was observed in the XRD θ -2 θ scans for the film reduced with H_2 as shown in [Fig. 2.](#page-2-0) Second, epitaxial $Fe₃O₄$ was produced by reduction of an epitaxial α -Fe₂O₃ film [\(Fig. 2\)](#page-2-0), whereas it could not be directly obtained from the as-prefired amorphous precursor films [\(Fig. 1b\)](#page-2-0). Of course, formation of an amorphous phase and disappearance of long-range order on a microscopic scale might have occurred, however, the crystallographic relationship, i.e., the spinel (111) plane \parallel the corundum (0001) plane, has been maintained during the redox reactions between iron oxides in the present study. Therefore, our postepitaxial topotaxy (PET) process, in which one epitaxial film is topotactically converted to another epitaxial film, is a very versatile method to prepare epitaxial films, especially on a substrate having a different type of crystal structure or a large lattice mismatch.

CONCLUSIONS

We have succeeded in preparation of (111)-oriented epitaxial magnetite ($Fe₃O₄$) films on C-planes of sapphire $[\alpha-\text{Al}_2\text{O}_3(0001)]$ by a postepitaxial topotaxy (PET) process using only chemical methods. In this process, first, (0001) oriented epitaxial hematite $(\alpha$ -Fe₂O₃) films were prepared on the substrate by a coating-pyrolysis process. The crystallographic relationship of the film and substrate was α -Fe₂O₃ (0001) α -Al₂O₃ (0001) and α -Fe₂O₃ $\langle 3000 \rangle$ α -Al₂O₃ $\langle 3000 \rangle$. Second, the α -Fe₂O₃ films were reduced in

FIG. 11. Reaction schemes that are included in this article. Bold arrows represent postepitaxial topotaxy routes.

an Ar-H₂ atmosphere $(pH_2 = 0.023$ atm) to Fe₃O₄ films. Pole-figure analysis exhibited that the $Fe₃O₄$ films were (111)-oriented epitaxial films. Two variants of $Fe₃O₄$ grains occurred and their crystallographic relationships were $Fe₃O₄$ (111) α -Al₂O₃ (0001) and $Fe₃O₄$ [110] α -Al₂ Fe₃O₄ (111) $\|\alpha-AI_2O_3\}$ (0001) and Fe₃O₄ [110] $\|\alpha-AI_2O_3$
 $\langle 1100\rangle$, $\langle 1100\rangle$. That is, α -Fe₂O₃ has been converted to $Fe₃O₄$ topotactically. Finally, epitaxial $Fe₃O₄$ films were oxidized in air to epitaxial γ -Fe₂O₃ films topotactically.

 $Fe₃O₄$ has a spinel-type structure with fcc sublattice of oxide anions, whereas α -Al₂O₃ has a corundum-type structure with hcp sublattice of oxide anions, the lattice mismatch being 8.0%. This present results exhibited that the topotactic reaction of epitaxial films (PET process) is particularly useful for the following cases: (i) the structure type of the film is different from that of the substrate, and (ii) the lattice mismatch with the substrate is large. Although the PET process will also be applicable to thin film preparation by gas-phase deposition methods, we think that the process will find a wider applications in the thick film fabrication by chemical solution-based routes since, using the latter processes, epitaxy has been thought quite difficult to obtain with such a set of film and substrate.

REFERENCES

- 1. For example, Epitaxial Oxide Thin Films III. *Mater*. *Res*. *Soc*. *Symp*. *Proc*. 474 (1997).
- 2. T. Manabe, W. Kondo, S. Mizuta, and T. Kumagai, *J*. *Mater*. *Res*. 9, 858 (1994).
- 3. T. Nagahama, T. Manabe, I. Yamaguchi, T. Kumagai, S. Mizuta, and T. Tsuchiya, *J*. *Mater*. *Res*. 15, 783 (2000).
- 4. T. Manabe, I. Yamaguchi, W. Kondo, S. Mizuta, and T. Kumagai, *J*. *Mater*. *Res*. 12, 541 (1997).
- 5. Y. Gao, Y. J. Kim, S. A. Chambers, and G. Bai, *J. Vac. Sci. Tech. A* 15, 332 (1997).
- 6. T. Fujii, M. Takano, R. Katano, Y. Isozumi, and Y. Bando, *J*. *Magn*. *Magn*. *Mater*. 130, 267 (1994).
- 7. I. Yamaguchi, T. Manabe, T. Kumagai, W. Kondo, and S. Mizuta, *J*. *Mater*. *Res*. 13, 935 (1998).
- 8. I. Yamaguchi, T. Manabe, T. Kumagai, W. Kondo, and S. Mizuta, ¹*hin Solid Film*s 365, 36 (2000).
- 9. T. A. Derouin, C. D. E. Lakeman, X. H. Wu, J. S. Speck, and F. F. Lange, *J*. *Mater*. *Res*. 12, 1391 (1997).
- 10. T. Fujii, M. Takano, R. Katano, Y. Bando, and Y. Isozumi, *J*. *Appl*. *Phys*. 66, 3168 (1989).
- 11. T. Fujii, M. Takano, R. Katano, Y. Bando, and Y. Isozumi, *J*. *Appl*. *Phys*. 68, 1735 (1990).
- 12. H. J. Masterson, J. G. Lunney, and J. M. D. Coey, *J*. *Magn*. *Magn*. *Mater*. 115, 155 (1992).
- 13. D. Zscherpel, W. Ranke, W. Weiss, and R. Schlögl, *J. Chem. Phys.* 108, 9506 (1998).
- 14. Y. J. Kim, C. Westphal, R. X. Ynzunza, Z. Wang, H. C. Galloway, M. Salmeron, M. A. Van Hove, and C. S. Fadley, *Surf*. *Sci*. 416, 68 (1998).
- 15. Y. Q. Cai, M. Ritter, W. Weiss, and A. M. Bradshaw, *Phys*. *Rev*. *B* 58, 5043 (1998).
- 16. I. Yamaguchi, T. Terayama, T. Manabe, T. Kumagai, and S. Mizuta, *J. Sol-Gel Sci. Tech.* **19**, 753 (2000).
- 17. I. Yamaguchi, T. Manabe, T. Kumagai, W. Kondo, and S. Mizuta, ¹*hin Solid Films* 366, 294 (2000).
- 18. K. Tamari, T. Doi, and N. Horiishi, *Appl. Phys. Lett.* 63, 3227 (1993).
- 19. M. Ozaki, S. Kratohvil, and E. Mtijevic, *J*. *Colloid Interface Sci*. 102, 146 (1984).
- 20. C. Li and Z. Hong, *J*. *Solid State Chem*. 134, 248 (1997).
- 21. M. Ozaki and E. Matijevic, *J*. *Colloid Interface Sci*. 107, 199 (1985).
- 22. D. R. Gaskell, *in* "Introduction to Metallurgical Thermodynamics," p. 442. McGraw-Hill Kogakusha, Tokyo, 1973.
- 23. M. Boudeulle, H. Batis-Landoulsi, CH. Leclercq, and P. Vergnon, *J*. *Solid State Chem*. 48, 21 (1983).
- 24. C. Greaves, *J*. *Solid State Chem*. 49, 325 (1983).
- 25. W. H. Hall, *Proc*. *Phys*. *Soc*. *A* 62, 741 (1949).
- 26. S. Kachi, K. Momiyama, and S. Shimizu, *J*. *Phys*. *Soc*. *Jpn*. 18, 106 (1963).
- 27. D. T. Margulies, F. T. Parker, F. E. Spada, R. S. Goldman, J. Li, R. Sinclair, and A. E. Berkowitz, *Phys*. *Rev*. *B* 53, 9175 (1996).
- 28. E. J. W. Verwey, *Nature* 144, 327 (1939).
- 29. M. Matsui, S. Todo, and S. Chikazumi, *J*. *Phys*. *Soc*. *Jpn*. 43, 47 (1977).
- 30. J. K. Lin, J. M. Sivertsen, and J. H. Judy, *J*. *Appl*. *Phys*. 57, 4000 (1985).
- 31. Z.-J. Zhou and J.-J. Yan, *J*. *Magn*. *Magn*. *Mater*. 115, 87 (1992).
- 32. E. Schmidbauer and R. Keller, *J*. *Magn*. *Magn*. *Mater*. 152, 99 (1996).
- 33. F. Mathieu and A. Rousset, *Phil*. *Mag*. *A* 67, 533 (1993).